Instant immunity through chemically programmable vaccination and covalent self-assembly.
نویسندگان
چکیده
The ability to instantly create a state of immunity as achieved in the passive transfer of hyperimmune globulin has had a tremendous impact on public health. Unlike passive immunization, active immunization, which is the foundation of vaccinology, is an anticipatory strategy with inherent limitations. Here we show that elements of active and passive immunization can be combined to create an effective chemistry-driven approach to vaccinology. Reactive immunization was used to create a reservoir of covalent polyclonal antibodies in 3 mouse strains that were subsequently engrafted with syngeneic CT26 colon or B16F10 melanoma tumors. Upon administration of designed integrin alpha(v)beta(3) and alpha(v)beta(5) adapter ligands, the induced covalent polyclonal antibodies self-assembled with the adapter ligands and the animals mounted an instant, chemically programmed, polyclonal response against the implanted tumors. Significant therapeutic responses were observed without recourse to adjuvant therapy. The chemically programmed immune responses were driven by antibody-dependent cellular cytotoxicity and complement-directed cytotoxicity. We suggest that this type of chemistry-driven approach to vaccinology is underexplored and may provide routes to vaccines to protect against diseases that have proven intractable to biology-driven vaccine approaches.
منابع مشابه
Synthesis and characterization of supramolecule self-assembly polyamidoamine (PAMAM) G1-G1 NH2, CO2H end group Megamer
Supramolecule self assembly polyamidoamine (PAMAM) dendrimer refers to the chemical systems made up of a discrete number of assembled molecular subunits or components. These strategies involve the covalent assembly of hierarchical components reactive monomers, branch cells or dendrons around atomic or molecular cores according to divergent/convergent dendritic branching principles, systematic f...
متن کاملProgrammable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion
Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolec...
متن کاملCovalent decoration of graphene oxide with dendrimer-encapsulated nanoparticles for universal attachment of multiple nanoparticles on chemically converted graphene.
We report a method for universal assembly of multiple nanoparticles with different sizes and compositions on a single chemically converted graphene sheet with good control over particle sizes in the range of 1 to 2 nm through the covalent immobilization of dendrimer-encapsulated nanoparticles.
متن کاملSynthesis and self-assembly of dynamic covalent block copolymers: towards a general route to pore-functionalized membranes.
A diblock copolymer is designed to have incompatible blocks, unsymmetrical block lengths, and a reversible linkage. This copolymer self-assembles into nanostructured cylindrical morphology in thin films. Removal of the nanosized cylinders by breaking the reversible linkage then affords nanoporous membranes featuring a chemically reactive functionality in the pores.
متن کاملSelf-Assembly of Densely Packed ZnO Nanorods Grown Chemically on Porous Silicon Substrate
Self-assembly of densely packed ZnO nanorods were grown on Porous Silicon (PS) substrate by low-temperature chemical bath deposition. The structural and optical properties of the obtained ZnO nanostructure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 11 شماره
صفحات -
تاریخ انتشار 2009